Производитель лаков и красок AkzoNobel из Нидерландов пять лет назад представил инструмент на основе больших данных для судоходных компаний. Компания помогает спрогнозировать потенциальную экономию топлива и углекислого газа в зависимости от покрытия судна — еще до того, как это покрытие будет нанесено. На основе аккумулированных данных AkzoNobel предсказывает, как корабль будет обрастать ракушками, водорослями и другими морскими обитателями (все это замедляет ход судна), и предлагает то покрытие, которое даст наибольшую экономию».
Алена Дробышевская, директор группы консультирования в области ИТ KPMG в России и СНГ, приводит AkzoNobel как вдохновляющий пример того, как компания, аккумулировавшая данные начиная с 1970-х годов по инициативе сотрудников, в итоге смогла удачно их монетизировать. «Аналитический продукт стал дополнительным источником прибыли, но он также помогает их основному лакокрасочному бизнесу», — говорит она.
Однако история AkzoNobel — это вовсе не история случайного обогащения некой компании на основе накопленных big data, которые потом внезапно пригодились. Это крупная транснациональная компания с выручкой 10 млрд евро, свой продукт они готовили пять лет, и привлекли к его разработке серьезные команды программистов и ученых.
Управление данными сегодня подается разработчиками специальных решений и бизнес-консультантами как непременный атрибут успешного в будущем бизнеса, который непременно выведет бизнес на новый уровень, сделает его более прибыльным и современным. После сбора данных следующая стадия — построенная на их базе аналитика, в том числе предсказательная, а дальше вроде бы рукой подать до цифровой компании.
Однако, присмотревшись к хайпу вокруг big data пристальнее, можно увидеть, что возможности больших данных пока не так уж обширны, а извлечь выгоду из них может ограниченное число игроков.
Интересно, что разработчики решений для больших данных уже призывают своих клиентов не ждать явных денежных эффектов от внедрения этих решений. Так, Билл Шмарзо, технический директор Hitachi Vantar, заявил, что рассматривать монетизацию больших данных как «нечто, предоставляемое взамен» (другими словами, пытаться продать свои данные, то, что смогли реализовать голландские поставщики красок) или как «выгоду от использования» (получить новый источник дохода на основе информации, извлеченной из накопленных данных) — «в корне неверный подход». Но как правильно подходить к монетизации big data, никто сказать не берется. Пока предлагается лишь копить данные, чтобы в будущем, возможно, получить от этого выгоду путем, который пока неясен.
Еще на базе
Большинство компаний сейчас находится на стадии сбора информации и составления так называемого озера данных — хранилища данных нового типа, где информация накапливается в необработанном виде и вместе с тем может легко выгружаться и использоваться для анализа. Это самая трудоемкая и затратная часть для компаний, которые хотят использовать big data. При этом мало создать озеро данных — важно, ч